Heel strike detection using split force-plate treadmill.
نویسندگان
چکیده
A common source of error when detecting heel-strike moments utilizing split force-plate treadmills is unwillingly stepping on contra-lateral force-plate. In this study, we quantified this error when heel-strike was detected based on such erroneous data and compared three methods to investigate how well the heel-strikes and stride-intervals were detected with erroneous data. Eleven subjects walked on a split force-plate treadmill for more than 20min. We used 20N and 50% body-weight thresholds to detect the heel-strike moments (HS20N and HS50%, respectively). Besides, we used linear approximation to estimate the unaffected force profile from affected force-plate data, and subsequently to detect the heel-strike moments (HSest). We used heel-strike moments detected by a foot-switch as a reference to compare accuracy of HS20N, HS50% and HSest. HS20N and HSest detected heel-strike moments accurately for unaffected force-plate data (median(max) errors for all subjects: 9(23) and 9(37) ms) but HS50% showed significantly larger errors (52(74) ms). Unlike HS50% and HSest, HS20N was considerably affected by the affected force-plate data (23(68) ms). The error in stride-interval measurement was relatively small using any methods for unaffected force-plate data (3(7), 6(8), and 6(12) ms), while stride-interval errors were large for some subjects when using HS20N for affected data (6(175) ms). We concluded that unwillingly stepping on contra-lateral force-plate occurred a few percent and up to 37.7% of all strides (median: 12.9%). Our proposed method (HSest) robustly showed small errors for heel-strike detection and stride-interval calculation consistently among subjects, while HS50% and HS20N showed large errors depending on subjects.
منابع مشابه
Two simple methods for determining gait events during treadmill and overground walking using kinematic data.
The determination of gait events such as heel strike and toe-off provide the basis for defining stance and swing phases of gait cycles. Two algorithms for determining event times for treadmill and overground walking based solely on kinematic data are presented. Kinematic data from treadmill walking trials lasting 20-45s were collected from three subject populations (healthy young, n=7; multiple...
متن کاملA new approach to modeling vertical stiffness in heel-toe distance runners.
Various models have been used to describe distance running technique. Among these, the mass-spring model is fairly simple to use and apply, but when employed as a model, does not predict vertical force accurately especially when a heel strike is exhibited. The purpose of this article is to demonstrate how the mass-spring model can be modified to provide a simple, yet accurate prediction of grou...
متن کاملPredictive control of ankle stiffness at heel contact is a key element of locomotor adaptation during split-belt treadmill walking in humans.
Split-belt treadmill walking has been extensively utilized as a useful model to reveal the adaptability of human bipedal locomotion. While previous studies have clearly identified different types of locomotor adaptation, such as reactive and predictive adjustments, details of how the gait pattern would be adjusted are not fully understood. To gain further knowledge of the strategies underlying ...
متن کاملFoot-strike pattern and performance in a marathon.
PURPOSE To determine prevalence of heel strike in a midsize city marathon, if there is an association between foot-strike classification and race performance, and if there is an association between foot-strike classification and gender. METHODS Foot-strike classification (forefoot, midfoot, heel, or split strike), gender, and rank (position in race) were recorded at the 8.1-km mark for 2112 r...
متن کاملCenter of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking.
In many simple walking models, foot placement dictates the center of pressure location and ground reaction force components, whereas humans can modulate these aspects after foot contact. Because of the differences, it is unclear to what extent predictions made by models are valid for human walking. Yet, both model simulations and human experimental data have previously indicated that the center...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gait & posture
دوره 41 3 شماره
صفحات -
تاریخ انتشار 2015